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After finding the basic solutions of the linearized nonlinear Schrödinger equation by the method of separa-
tion of variables, the perturbation theory for the dark soliton solution is constructed by linear Green’s function
theory. In application to the self-induced Raman scattering, the adiabatic corrections to the soliton’s parameters
are obtained and the remaining correction term is given as a pure integral with respect to the continuous
spectral parameter.
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I. INTRODUCTION

The nonlinear Schrödinger �NLS� equation supports dark
soliton solutions in the case of normal group-velocity disper-
sion in optical fibers or self-defocusing nonlinearity in
waveguides. Dark solitons appear as an intensity dip in the
modulationally stable background. They were discovered by
Hasegava and Tappert in 1973 �1� and then became a subject
of intensive theoretical and experimental studies �2�.

An inverse scattering transform �IST� was proposed to
solve the NLS equation with normal dispersion �NLS+ equa-
tion for brevity�

iut − uxx + 2�u�2u = 0 �1�

under nonvanishing boundary conditions �u�→� as x→ ±�,
and exact dark-soliton solutions were found �3,4�:

u�x,t� = �
�� + i��2 + exp Z

1 + exp Z
ei2�2t, �2 = 1 − �2, �2�

where Z=2���x−x0+��t�. Dark solitons can also be ob-
tained by assuming a solution of the form u�x , t�
= f�x�exp�i��x , t�� and then solving the ordinary differential
equations satisfied by f�x� and ��x , t�; see Ref. �5�. A dark
soliton solution thus obtained is

u�x,t� = � tanh �ei�, �3�

where

� = ��x − x0 + Vt� , �4�

� = �2�2 +
1

4
V2�t +

1

2
Vx + �0, �5�

which is an antisymmetric function of time with an abrupt �
phase shift and zero intensity at its center. It is often referred
to as the fundamental dark soliton �or black soliton� �4�.

In real situations of physical applications of solutions,
higher-order effects and other external corrections are often
treated as small perturbations. Two systematic approaches of
perturbation theory have been established for some typical

nonlinear evolution equations since 1970s. They are so-
called perturbation theory based on IST �6� and direct per-
turbation theory �7�. The difficulties in developing perturba-
tion theory for dark solitons of the NLS+ equation originate
from the nonvanishing boundary conditions which may be
changed when the corrections present. The perturbation
theory based on IST requires an assumption of fixed bound-
ary conditions �8�; therefore, this approach is not appropriate
for dark solitons generally. A direct perturbation theory for
dark soliton solution �2� was developed based on a complete
set of squared Jost solutions �9�, the completeness is proved
by direct substitution of the explicit expressions of the Jost
solutions, and difficulties caused by the background are over-
come.

Direct perturbation theory for the solution �3� was also
examined �10,11�. However, it is unsatisfactory because the
basic solutions referring to the point of the discrete spectrum
are obtained by direct observation, which makes trouble for
the basic solutions because of the ignorance of the analytic
property, which is necessary in the normal analytic continu-
ation procedure �12�.

The aim of this paper is to formulate the direct perturba-
tion theory for dark soliton solution �3� clearly and com-
pletely. Our approach is developed in the framework of
Green’s function theory for linear differential equations; it is
concise and easy to understand.

This paper is organized as follows. The general expres-
sions of the linearized perturbed NLS+ equation are given in
Sec. II. After introducing an affine parameter to avoid
double-valued functions, the linearized equation is solved by
the method of separation of variables in Sec. III. The two
pairs of independent basic solutions are redefined so that all
desired properties of these solutions under asymptotic condi-
tions as well as under the reduction transformation are ful-
filled. The orthogonality and completeness of the expanding
base are proved by a 1+1 Green’s theorem and Green’s func-
tion theory in Sec. IV. In application to the self-induced Ra-
mam scattering �SRS� effect �13,14� the adiabatic corrections
to the dark soliton’s parameters are obtained; the correction
due to the continuous parameter is given by a pure integral.
The calculations of corrections are shown in Sec. V. Finally,
the work is summarized and unreasonable points in the pre-
vious papers �10,11� are mentioned in Sec. VI.
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II. PERTURBED NLS+ EQUATION

The perturbed NLS+ equation can be written as

ivt − vxx + 2�v�2v = i�p�v� , �6�

where � is a small positive parameter and p�v� is a functional
of v.

We assume that �7�

v = ua + �q , �7�

where ua is the adiabatic solution which has the same func-
tional form as the exact dark soliton solution �3�, but the
parameters involved depend linearly on �t, and �q is the
remain correction term. Substituting Eq. �7� into Eq. �6�
yields

iqt − qxx + 4�u�2q + 2u2q̄ = iP�u� , �8�

where P�u� is the effective source,

P�u� = p�u� − s�u�, s�u� =
d

d	
u , �9�

and 	=�t is the slow time in the multitime expansion theory
�15�. Since Eq. �9� is of the order of �, u on the left-hand side
�LHS� of Eq. �8� is the exact dark soliton.

Substituting the explicit expression of the dark solution,
Eq. �3�, and introducing

e−i�q = g, ei�q̄ = ḡ , �10�

Eq. �8� is written as

igt − 2�2g − gxx − iVgx + 4�2 tanh2 �g + 2�2 tanh2 �ḡ = ie−i�P .

�11�

Equation �11� and its complex conjugate can be written in a
matrix form

Lg = iP̃, P̃ = e−i�
3P, P = �P

P̄
� , �12�

where 
 j , j=1,2 ,3, are Pauli matrices and the linearized op-
erator L is

L = �i�t − �x
2 − iV�x + 4�2 tanh2 � − 2�2 2�2 tanh2 �

− 2�2 tanh2 � i�t + �x
2 − iV�x − 4�2 tanh2 � + 2�2 � . �13�

III. BASIC SOLUTIONS OF THE LINEARIZED
EQUATION

A. Separation of variables

The next problem is to find the basic solutions of the
linearized operator with zero eigenvalue

LW = 0. �14�

We can separate variables by a coordinate transformation to
the center of the soliton and return to the originate coordi-
nates after obtaining the solutions. Just by simple calcula-
tions,

W�t,x�·1 = ei4��t−i2�Vte−i2�x� �� tanh � + i	2

�� tanh � − i�2−1	2 � , �15�

W�t,x�·2 = e−i4��t+i2�Vtei2�x��� tanh � + i�2−1	2

�� tanh � − i	2 � �16�

are two solutions for Eq. �14� with constant factor e±i2�x0

dropped. Here � is real and an affine parameter  in intro-
duced to avoid double-value functions of � such that

� =
1

2
� − �2−1�, � =

1

2
� + �2−1� . �17�

Then W�t ,x�·1 and W�t ,x�·2 satisfy

LW�t,x�·1 = 0, LW�t,x�·2 = 0. �18�

We also have

LW�x�·1 = 2��2� − V�W�x�·1,

LW�x�·2 = − 2��2� − V�W�x�·2, �19�

where W�x�·1 is W�t ,x�·1 without ei4��t−i2�Vt, for example.

B. Desired properties of the basic solutions

In consideration of various properties we define four so-
lutions as follows:

�̃�t,x,� = ei4��t−i2�Vte−i2�x� �� tanh � + i	2

�� tanh � − i�2−1	2 ��� + i�−2,

�20�

��t,x,� = e−i4��t+i2�Vtei2�x��� tanh � + i�2−1	2

�� tanh � − i	2 ��� − i�−2,

�21�

��t,x,� = ei4��t−i2�Vte−i2�x� �� tanh � + i	2

�� tanh � − i�2−1	2 ��� − i�−2,

�22�
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�̃�t,x,� = e−i4��t+i2�Vtei2�x��� tanh � + i�2−1	2

�� tanh � − i	2 ��� + i�−2.

�23�

They have the following properties: in the complex 
plane excluding 0 and �, ��t ,x ,� and ��t ,x ,� have a

double pole at =−i� and �̃�t ,x ,� and �̃�t ,x ,� have a
double pole at = i�; elsewhere, they are analytic. In the limit
x→� we have

�̃�x,� → e−i2�x� 1

− �2−2 � , �24�

��x,� → ei2�x�− �2−2

1
� , �25�

and in the limit x→−�

��x,� → e−i2�x� 1

− �2−2 � , �26�

�̃�x,� → ei2�x�− �2−2

1
� . �27�

We also have the properties

��t,x,� = a��2�̃�t,x,�, a�� =
 − i�

 + i�
, �28�

�̃�t,x,� = ã��2��t,x,�, ã�� =
 + i�

 − i�
. �29�

Moreover, under the transformation →�=�2−1, we have

�̃�x,� = − �−2�2��x,�� , �30�

�̃A�x,� = − �−2�2��x,�� . �31�

IV. ORTHOGONALITY AND COMPLETENESS

A. Adjoint operator

We now introduce the adjoint operator by partial integra-
tion. Consider

gTLf − fTLAg = divergence, �32�

where f and g are rays with two components. The adjoint
operator is, obviously,

LA = �− i�t − �x
2 + iV�x + 4�2 tanh2 � − 2�2 − 2�2 tanh2 �

2�2 tanh2 � − i�t + �x
2 + iV�x − 4�2 tanh2 � + 2�2 � , �33�

and the divergence term is

i�t�f1g1 + f2g2� − iV�x�f1g1 + f2g2� − �x�f1xg1 − f1g1x − f2xg2

+ f2g2x� . �34�

Comparison of Eqs. �13� and �33� gives

− 
2L
2 = LA; �35�

this indicates that the basic solution of the adjoint operator is

LAWA = 0, WA = i
2W . �36�

Since in terms of  two values of  correspond to one
value of � or � via Eq. �17�, we must restrict the domain of
—for example, � � ��. In this restriction, the independent
basic solutions of the linearized equation may be chosen as

�̃�t ,x ,� and ��t ,x ,�, because they have different
asymptotic behaviors. Then the independent adjoint solutions

are �A�t ,x ,� and �̃A�t ,x ,�.

B. „1+1… Green’s theorem and orthogonality

Assuming that f=��x , t ,� in Eq. �32� is the basic solu-
tion to the linearized operator L and g=�A�x , t ,�� to LA,
then the LHS of Eq. �32� equals zero. Integration of the

divergence term on the RHS over �−L ,L� for x and �0, t� for
t yields

i

−L

L

�dx�f1g1 + f2g2��t=0
t=t = 


0

t

�dt�iV�f1g1 + f2g2� + �f1xg1

− f1g1x − f2xg2 + f2g2x�	�x=−L
x=L .

�37�

The time factor on the RHS is simply ei4���−�����t−i2��−���Vt,
since �x�→�. Integration with t is given a factor

1
i4���−�����−i2��−���V

. Thus Eq. �37� reduces to

i

−L

L

dx�f1g1 + f2g2� =
1

i4��� − ����� − i2�� − ���V

� ��iV�f1g1 + f2g2� + �f1xg1 − f1g1x

− f2xg2 + f2g2x�	�x=−L
x=L , �38�

where t=0. It is easy to know that fx= i2�f, gx=−i2��g, and
the brackets on the RHS are equal to iV�f1g1+ f2g2�+ i2��
+����f1g1− f2g2�. Noting that in
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i4��� − ����� − i2�� − ���V

= i� − ���� + ���1 + �4−2�−2� − V�1 + �2−1�−1��
�39�

and

i2�� + ����1 + �4−2�−2� + iV��4−2�−2 − 1�

= i�1 − �2−1�−1��� + ���1 + �4−2�−2�

− V�1 + �2−1�−1�� �40�

the squared brackets of them are the same, Eq. �38� thus
becomes



−L

L

dx�f1g1 + f2g2� =
�1 − �2−1�−1�

i� − ��
�a���2ei2��−���L

− a��2e−i2��−���L� . �41�

Here we have used Eqs. �24� and �26�.
Since �� , ����� and 2��−���= �−���1+�2−1�−1�, we

have

lim
L→�

1

i� − ��
ei2��−���L = ��� − �� . �42�

As L→� Eq. �41� becomes

���������� = 2�a��2�1 − �2−2��� − �� , �43�

where limL→�−L
L dx�f1g1+ f2g2�= ����� �����. Similarly,

��̃�����̃��� = − 2�ã��2�1 − �2−2��� − �� . �44�

C. Choice of � in the whole range ˆ−� ,�‰

Since functions are written in terms of an affine parameter
, we should consider their properties under the reduction
transformation →�2−1. Equation �32� leads to

�� − �� = ���2�−1 − �2��−1� =
���

�2 ��� − ��� , �45�

where =�2�−1, �=�2��−1. Therefore, substituting Eqs. �30�
and �45� into Eq. �44� leads to

�������������−4��2�2 = − 2�a���2�1 − �−2�2�
���

�2

���� − ��� . �46�

Canceling the same factors on the two sides we obtain

������������ = 2�a���2�1 − �2�−2���� − ��� , �47�

with the same form as Eq. �43�, but ��� , ������. Thus Eq.
�43� is valid for  and � in the whole range �−� ,�	. There-
fore, the independent basic solution is only 1, and we choose
��t ,x ,�. The corresponding adjoint solution is �A�t ,x ,�.

When , the argument of ��x ,�, runs from −� to �, it
can be analytically continued into the upper half plane of
complex . Thus from

L��t,x,� = 0, L��x,� = − �4�� − 2�V���x,� ,

�48�

we have

L��t,x,i�� = 0, L��x,i�� = i2�V��x,i�� �49�

and

L�̇�t,x,i�� = 0,

L�̇�x,i�� = i2�V�̇�x,i�� − i4���x,i�� , �50�

where �̇�x , t , i��= � d
d��x , t ,��=i�, since L does not involve

the parameter . Here we notice that a�� has only one zero
= i�.

Writing Eq. �41� in the form

i� − ��

−L

L

dx�f1g1 + f2g2�

= �1 − �2−1�−1�

� �a���2ei2��−���L − a��2e−i2��−���L� , �51�

and then applying the operators � d
d �=�=i�, � d2

d2 �=�=i�, and

�� d3

d3 +3 d
d�

d2

d2 ��=�=i� to Eq. �51�, respectively, we obtain

���i�����i��� = 0,

��̇�i�����i��� = ���i����̇�i��� = i2ȧ�i��2,

��̇�i����̇�i��� = i2ȧ�i��ä�i�� − 2�−1ȧ�i��2, �52�

where i� is in the upper complex  plane.
From Eq. �21� we have

��x,i�� = e−2�x1

4
�tanh � + 1�2�1

1
� , �53�

�̇�x,i�� = ��x,i��
i

�
+ e−2�x1

2
�tanh � + 1�� 1

− 1
� i

�
. �54�

D. Green’s function

The linearized equation is essentially a linear equation, so
we can choose an appropriate method of linear equations.
The RHS of the linearized equation �12� is not zero; its
Green’s function G�x , t ,x� , t�� is defined as

LG = ��x − x����t − t�� . �55�

It is a 2�2 matrix since the basic solution has two compo-
nents. The solution of Eq. �12� can be written as

q = 

0

�

dt�

−�

�

dx�G�x,t,x�,t��P̃�x�,t�� . �56�

Because of the causality condition, G should be zero for t�
� t, hence
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G = G0�x,t,x�,t����t − t�� , �57�

where ��	� represents the step function—i.e., ��	�=1 for 	
�0 and ��	�=0 for 	�0. Then Eq. �56� becomes

q = 

0

t

dt�

−�

�

dx�G0�x,t,x�,t��P̃�x�,t�� , �58�

and this solution fulfills the initial condition q=0 for t=0.
Inserting Eq. �58� into Eq. �12� gives



−�

�

dx�G0�x,t,x�,t�P̃�x�,t�

+ 

0

t

dt�

−�

�

dx�LG0�x,t,x�,t��P̃�x�,t�� = P̃�x,t� .

�59�

This equation is identically satisfied by assuming that G0

is a solution of the homogeneous equation

LG0�x,t,x�,t�� = 0 �60�

and obeys the final condition

G0��x,t,x�,t���t=t� = ��x − x�� , �61�

noticing that these are all 2�2 matrices. The Green’s func-
tion G0 is completely determined by the above two condi-
tions.

E. Proof the completeness

The functions ��x , t ,�, ��x , t , i��, and �̇�x , t , i�� are the
basic solutions of the linearized equation—i.e., solutions of
homogeneous equation. Moreover, from the properties of the
reduction transformation, the state labeled with a tilde is not
needed.

The above three are the basic solutions of the linearized
equation, so we have

G0�x,t,x�,t�� = 

−�

�

d ��x,t,�A�x�,t�,�

+ ��x,t,i��B�x�,t�,i�� + �̇�x,t,i��C�x�,t�,i�� ,

�62�

where A, B, and C are undetermined 1�2 matrices. Equa-
tion �61� then becomes

��x − x�� = 

−�

�

d ��x,t,�A�x�,t,� + ��x,t,i��B�x�,t,i��

+ �̇�x,t,i��C�x�,t,i�� .

Multiplying Eq. �63� by �A�x , t ,��T from the left and inte-
grating over x yields

�A�x�,t,��T =
 d M�t,�,�A�x�,t,� , �63�

where

M�t,�,� = 

−�

�

dx �A�x,t,��T��x,t,�

= 2�a��2�1 − �2−2��� − �� , �64�

the summary terms vanish for the orthogonality, and the final
expression of M comes from Eq. �43�. Then from Eqs. �63�
and �64� we have

A�x�,t,� =
1

2�a��2�1 − �2−2�
�A�x�,t,�T. �65�

Similarly, multiplying Eq. �63� by �A�x , t , i��T and

�̇A�x , t , i��T from the left, respectively, and integrating over
x, after some work we also obtain the expressions of B and
C. Substituting the expressions of A, B, and C into Eq. �63�,
we obtain the equation of completeness,

��x − x�� =
1

2�



−�

�

d
1

a��2�1 − �2−2�
��x,��A�x�,�T

− i
1

2ȧ�i��2 ��̇�x,i���A�x�,i��T

+ ��x,i���̇A�x�,i��T� + i� ä�i��
2ȧ�i��3

+
2�2i�−3

4ȧ�i��2���x,i���A�x�,i��T. �66�

V. CALCULATIONS OF THE FIRST-ORDER
APPROXIMATION

A. Secularity conditions

According to the completeness equation �66� the un-
known function �g� can be expanded as

�g� =
1

2�



−�

�

d g������� + gd���i��� + fd��̇�i��� ,

�67�

where g��, gd, and fd are functions of t. Applying the op-
erator L and taking account of Eq. �12� yields

i�P̃� =
1

2�



−�

�

d�igt − g�4�� − 2�V�	����� + �igdt

+ �i2�V�gd	���i��� + �ifdt + �i2�V�fd	��̇�i���

− �i4��fd���i��� . �68�

Multiplying ���i��� from the left of Eq. �68�, we obtain

�ifdt + �i2�V�fd�i2ȧ�i��2 = i���i���P̃� , �69�

so that fd will tend to infinity as t→�, unless

���i���P̃� = 0. �70�

Similarly, we demand
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��̇�i���P̃� = 0. �71�

These two conditions, Eqs. �70� and �71�, are called security
conditions.

B. Application: Self-induced Raman scattering

As an example of the application of the perturbation
theory developed above, we consider the dynamics of dark
solitons under the influence of self-induced Raman scatter-
ing. It is described by the NLS+ equation with the SRS term
	du��u�2�t,

iuz −
1

2
utt + �u�2u = 	du��u�2�t; �72�

here, z is the spatial variable, t is the temporal variable, and
	d is the normalized time delay. The SRS item, which is one
of the important perturbations acting on dark solitons in fi-
bers, appears when the pulse duration in fibers reaches the
subpicosecond regime. It was investigated both numerically
and analytically �13,14�.

Here we rewrite Eq. �72� in our style by z→2t and t
→x,

iut − uxx + 2�u�2u = �u
�

�x
��u�2� . �73�

The adiabatic soliton solution for Eq. �73� is Eq. �3� with the
difference that parameters are not written that strictly, but

� = ��x − ��, � =
1

2
V�x − �� + � . �74�

In the unperturbed case, we have

�t = − V, Vt = 0, �t = 0, �t = −
V2

4
+ 2�2. �75�

From Eq. �22� we obtain

�A�x,i�� =
e2�x

4
�tanh � − 1�2� 1

− 1
� , �76�

�̇A�x,i�� =
i

�
� +

e2�x

2

i

�
�tanh � − 1��− 1

− 1
� . �77�

Hence the secularity conditions, Eqs. �70� and �71�, reduce to



−�

�

d� e2��tanh � − 1�2 Im�pe−i��

= 

−�

�

d� e2��tanh � − 1�2 Im�u	e
−i�� �78�

and



−�

�

d� e2��tanh � − 1�Re�pe−i��

= 

−�

�

d� e2��tanh � − 1�Re�u	e
−i�� �79�

by changing the integral variable x→�=��x−��. In Eq. �79�,
the terms �A�x , i�� in the RHS of Eq. �77� were canceled in
both sides on account of Eq. �76�.

The SRS term gives

e−i�p = �− i�e−i�u��u�2�x = 2�− i��4tanh2 � sech2 � , �80�

by substituting Eq. �12�. The LHSs of Eqs. �78� and �79� are
−8�2 /15 and 0, respectively.

Since

u	 = �	

d

d�
u + V	

d

dV
u + �	

d

d�
u + �	

d

d�
u , �81�

we have

e−i�u	 = �	�tanh � + � sech2 �� + �	�− �2 sech2 �

−
i�V

2
tanh �� + V	

i

2
� tanh � + �	i� tanh � .

�82�

The RHS of Eq. �78� is V	 /2, and that of Eq. �79� is

2�2�	 + 

−�

�

d��	�− tanh2 � − � sinh � sech3 �� . �83�

Then from Eqs. �78� and �79� we obtain the evolution for the
SRS effect:

V	 = −
16

15
�4, �	 = 0, �	 = 0. �84�
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FIG. 1. Shape of a fundamental dark soliton after propagation
distance z=40 with parameter 	d=0.01. The dashed curve is the
initial pulse.
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FIG. 2. Trace of the soliton as a function of propagation
distance.
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Taking account of Eq. �75�, the evolution of the adiabatic
solution parameter, the formulas are obtained up to �:

�t = − V, Vt = −
16

15
�4�, �t = 0. �85�

These derive

� = �0, V = −
16

15
�4�t + V0 �86�

and

� =
8

15
�4�t2 − V0t + x0. �87�

Taking into consideration that our spatial variable t is half of
the one used in the literature—i.e., 2t=z—the time shift we
obtained is 2�4	dz2 /15, which is in agreement with the nu-
merical simulation by Zhao and Bourkoff �13�. Figure 1
shows the pulse shape after a fundamental dark soliton
propagates a distance z=40 with normalized time delay 	d
=0.01, and Fig. 2 gives the trace of the soliton as a function
of propagation distance z.

C. Continuous spectrum

Multiplying ����� from the left of Eq. �68�, we obtain an
equation for the continuous spectrum part:

�igt − 2��2� − V�g	a2���1 − �2−2� = i�����P̃� , �88�

which is equivalent to

i�t��gei2���2��−V�t�	a2���1 − �2−2� = ei2���2��−V�t�i�����P̃� ,

�89�

so that

g�,t� =
1

a2���1 − �2−2�
0

t

dt� e2i��2�−V��t�−t������P̃�t��� .

�90�

Since Eq. �88� is of the order of � and the factor � is canceled

to sides so that ���� � P̃� do not involve terms of order �, the

term P̃ thus reduces to

p̃ = e−i�
3p = �e−i�p

ei�p̄
� . �91�

For the SRS effect, pe−i� is given in Eq. �80�. Noting Eqs.
�22� and �36�, we have

�A�t,x,� = ei2��2�−V�te−i2�x� �� tanh � + i	2

− �� tanh � − i�2−1	2 ��� − i�−2.

�92�

Hence it is given as

�����P̃�

= ei2��2�−V�t

−�

�

dx i�� − i�−2e−i2�x2�4 tanh2 � sech2 �

� ��� tanh � + i�2 + �� tanh � − i�2−1�2	 . �93�

Since dx= 1
�d�, substituting A= −2�

� , the integral in Eq. �93�
can be evaluated and Eq. �90� is given by

g�,t� =
�− �5�I

a2���1 − �2−2��� − i�2�2� − V�

��e2i��2�t−x0� − e2i��Vt−x0��; �94�

here, I is a complex number coming from the integral over �
employing the residue theorem,

I = �2�2� A5

120
−

A3

6
+

A

6
� + �2�3−1 − 2���−

A4

24
+

A2

3
�

− �2 + �4−2��−
A3

6
+

A

3
��� csch

�A

2
. �95�

VI. SUMMARY AND DISCUSSION

In summary, we have developed a direct perturbation
theory for dark solutions to the NLS+ equation, which started
from the construction of basic solutions of the linearized
equation. The basic solutions related to the continuous spec-
trum were found in solving the equation by separating vari-
ables, and those related to the discrete spectrum were ob-
tained by analytic continuation from them. Also, perturbation
theory was applied to the SRS effect.

The same problem was discussed in previous work
�10,11�. In their work, basic solutions relating to the points of
discrete spectrum were obtained by direct observation. It
gave the solutions trouble resulting from ignorance of the
analytic property, which is necessary in the normal analytic
continuation procedure.
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